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Abstract— We present an expansion of the popular open source Visualization Toolkit (VTK) to support the ingestion, processing,
and display of informatics data. The result is a flexible, component-based pipeline framework for the integration and deployment of
algorithms in the scientific and informatics fields. This project, code named “Titan”, is one of the first efforts to address the unification
of information and scientific visualization in a systematic fashion. The result includes a wide range of informatics-oriented functionality:
database access, graph algorithms, graph layouts, views, charts, UI components and more. Further, the data distribution, parallel
processing and client/server capabilities of VTK provide an excellent platform for scalable analysis.

Index Terms—Visualization toolkit, scientific visualization, information visualization, pipeline model.

1 INTRODUCTION

There are many existing open source toolkits that provide functionality
around the traditional domains of scientific and information visualiza-
tion. However, the algorithms, techniques, and data structures present
in these toolkits are specialized for either the scientific visualization or
information visualization domain. The visualization community has
for many years discussed the unification of these domains in panels
[24] [27] and publications [18]. In this paper we describe Titan, an ex-
tension to the open-source toolkit VTK that embodies this unification.

Fig. 1. An application using the VTK/Titan toolkit to combine information
and scientific visualization [7]. The tree represents the development of a
C. elegans embryo from a single cell and is linked to a volume rendering
of the embryo at that time. Cells selected in the tree view are also linked
to gene expression data.

The expansion of the Visualization Toolkit (VTK) [19] to support
informatics in a meaningful and effective way represents a substantial
amount of current and ongoing work. Sandia National Laboratories
is spearheading this effort under the project name of “Titan”. In close
collaboration with Kitware, Inc. All of Titan is open source and will be
made available through the public VTK repository. Much of the work
is already available in the repository, with additional releases planned
quarterly.
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1.1 Our Goal

The goal of this project is to unify scientific and information visual-
ization under a single flexible, extensible, and scalable architecture.
The component pipeline design in VTK, with its executive/algorithm
model [21], enables developers to use and combine components in a
dynamic way. Extension of the toolkit is straightforward with well
defined APIs and excellent documentation; laboratories and academic
institutions around the world have already contributed new compo-
nents to the toolkit. Los Alamos, Lawrence Livermore and Sandia Na-
tional Laboratories have all contributed to the client/server, distributed
memory and parallel rendering features provided by VTK.

As part of the project goals we wanted to use third-party software
wherever possible within the Titan project. The framework is well
suited to support optional dependencies, allowing us to build upon the
strengths of excellent packages such as the following:

• Qt, for interface and application development

• BGL (Boost Graph Library), for graph algorithms

• PBGL (Parallel BGL) for parallel graph algorithms

• MTGL (Multithreaded Graph Library) algorithms for hyper-threaded hardware

• Trilinos: Scalable, distributed memory linear algebra library

1.2 Why VTK?

Building Titan within VTK allows us to benefit from VTK’s wide
exposure and community support. Contributions are welcome, en-
couraged, and supported under the existing VTK contribution model.
Moreover, since VTK is part of the curriculum in many visualization
courses, we have the opportunity to provide powerful new tools in a
framework that is already familiar to a wide audience.

We felt that VTK represented the best technology platform for a
unified toolkit. In the scientific visualization domain its usage is com-
mon, diverse and widespread. The component-based, demand-driven
pipeline provides a flexible integration platform for the coupling of
third party software packages. The toolkit supports a distributed mem-
ory usage model, and as the basis for the ParaView product it has
demonstrated world class scalability [4] [8] [2].

1.3 Main Contributions

The major contributions described in this paper are as follows:

• An open-source toolkit embodying a unified approach to scien-
tific visualization and information visualization

• A mechanism to use databases and database queries as the input
to an on-demand, streaming data pipeline

• The set of “Data-less” adapters to leverage the strengths of other
libraries and toolkits with minimal overhead

2 RELATED WORK

There is a large, impressive body of existing work in informatics toolk-
its. While an exhaustive list of existing toolkits, frameworks, and fea-
ture sets is beyond the scope of this paper, we highlight below a few
of the most popular projects and their key features. We hope to learn
from their successes and collaborate with them in the future.



• Prefuse Visualization Toolkit (www.prefuse.org):A Java-based
toolkit for building interactive information visualization appli-
cations [15]. Prefuse provides an effective interaction and ani-
mation infrastructure for building many different types of views.

• Tulip Toolkit (www.labri.fr/perso/auber/projects/tulip):A C++
toolkit for building interactive information visualization appli-
cations with both 2D and 3D display capability. Tulip imple-
ments some very fast algorithms for graph layout such as HDE
[20]. Tulip also has a plugin architecture for building and testing
graph and tree layout algorithms.

• GraphViz (www.graphviz.org): A set of libraries and executa-
bles, written in C, specifically for the visualization of many dif-
ferent types of graphs [13]. GraphVis mainly has functionality
around static, non-interactive diagram generation. It has high
quality graph layout algorithms and yields especially good re-
sults for directed acyclic graphs.

• InfoVis Toolkit (ivtk.sourceforge.net): A Java-based toolkit to
ease the development of Information Visualization applications
and components [11]. IVTK employs a unified data structure (a
table of columns) for all of its graph, table and tree data in order
to reduce memory footprint and reduce the complexity of filter-
ing, selection and interaction algorithms. The InfoVis Toolkit is
quite popular and allows the integration of several different types
of views.

• InfoVis Cyberinfrastructure (iv.slis.indiana.edu/sw): Like Titan,
this project provides an integration framework for other software
packages. While the IVC framework itself is written in Java,
it aims to allow contributors to integrate algorithms written in
many different languages. The InfoVis Cyberinfrastructure uses
the Eclipse Rich Client Platform for its application framework.

• Piccolo Toolkit (www.cs.umd.edu/hcil/piccolo): Piccolo is a
layer built on top of optimized language-dependent graphics
APIs. Currently supports Java and C# (Piccolo.Java, Pic-
colo.NET) [5]. Piccolo provides a built-in zoomable user inter-
face (ZUI) which targets building applications where the user can
transition smoothly from overview to fine detail.

• GeoVista Studio (www.geovistastudio.psu.edu/jsp): GeoVISTA
Studio [26] is an open software development environment de-
signed for geospatial data. It provides a visual programming
environment to allow application development without writing
code.

• Improvise (www.personal.psu.edu/faculty/c/e/cew15/improvise):
Improvise is a Java-based infovis toolkit especially strong in
linking and coordination between different views. It is capable
of visualizing its own structure and allows users to specify
queries and filters using a declarative, visual language.

Most existing information visualization toolkits use Java for its ease
of use, its embeddability within Web pages, and its cross-platform
compatibility. While these are major strengths, there are also many
reasons to provide information visualization capabilities in other lan-
guages such as C++ such as the ability to integrate mature C++ li-
braries for information processing (e.g. the Boost Graph Library) and
GUI building (e.g. Qt). We discuss this further in Section 3.

Heer and Agrawala describe software patterns in information visu-
alization, which the developers of Titan reviewed while building the
toolkit [14]. Since the Data Column, Renderer and Camera patterns
are already part of VTK, they are naturally a part of Titan. The func-
tions of the Operator pattern are already provided by VTK’s data-flow
pipeline.

The Boost Graph Library, while not a visualization library per se,
contains flexible data structures and C++ generic algorithms for graphs
[25]. Because of its success, we chose to integrate Titan with BGL for
graph algorithms, data structures, and parallel processing.

3 OVERVIEW

The Titan informatics components share the same C++ software
toolkit model as VTK. Moreover, by using the CMake build system
[22] Titan runs on Macintosh, Windows and various Unix platforms
without modification.

The Titan/VTK libraries contain data processing units called filters.
Each filter implements a single algorithm. A filter specifies its inputs
and outputs and may be hooked together with other filters into data
processing pipelines. Figure 2 gives an overview of the stages of the
toolkit pipelines. At the beginning of a pipeline are data sources such
as databases, XML or flat text files. These data sources are fed into
the pipeline either through database queries or traditional file readers.
The output from data sources is processed by filters that implement
algorithms and analysis techniques. The output of a series of filters
is connected to a Titan view for visualization. An application is typi-
cally centered around one or more views. The user may interact with
these views and through the UI may change data sources, configure
filter parameters, or change view settings. The pipeline executive in
the toolkit detects changes in pipeline components and updates the ap-
propriate parts of the pipeline accordingly.
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readers

algorithms
update
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Fig. 2. Overview of the data flow model used by the Titan informat-
ics toolkit. Readers load data from files or databases. The data are
transformed by sequences of filters and then displayed in linked views.
By interacting with the application and its views, the user can change
parameters on filters and renderers and see the results immediately.

The well defined, well documented APIs associated with the
pipeline and components make extending the toolkit straightforward.
Developers often inspect an existing filter that does something similar
to what they want to do, and use that code as a starting-point for their
development.

Since Titan is a part of VTK, wrappers for Python, Java and Tcl
are automatically generated for every class. This allows the full func-
tionality of Titan to be used in applications written in any of these
languages. In Figures 3 and 4 we illustrate a “Hello, World” example
using Titan in both C++ and Python. The Java and Tcl wrappings are
similar. The code generates a random graph, runs a Boost Graph Li-
brary breadth first search algorithm on the graph and displays it in a
graph layout view.

These examples can be expanded with just a few more lines of code
to provide visualizations like that shown in Figure 6 which demon-
strates both the use of dynamic labeling [6] and hierarchical graph
bundles [17]. These techniques, developed by other members of the vi-
sualization community, were added to Titan in just days. The pipeline
architecture allows new techniques to be rapidly deployed within the



#include "vtkBoostBreadthFirstSearch.h"

#include "vtkGraphLayoutView.h"

#include "vtkRandomGraphSource.h"

#include "vtkRenderWindow.h"

#include "vtkRenderWindowInteractor.h"

int main(int argc, char* argv[])

{

// Create a random graph

vtkRandomGraphSource* source =

vtkRandomGraphSource::New();

// Create BGL algorithm and put it in the pipeline

vtkBoostBreadthFirstSearch* bfs =

vtkBoostBreadthFirstSearch::New();

bfs->SetInputConnection(source->GetOutputPort());

// Create a view and add the BFS output

vtkGraphLayoutView* view = vtkGraphLayoutView::New();

view->AddRepresentationFromInputConnection(

bfs->GetOutputPort());

// Color vertices based on BFS search

view->SetVertexColorArrayName("BFS");

view->ColorVerticesOn();

view->SetVertexLabelArrayName("BFS");

view->VertexLabelVisibilityOn();

vtkRenderWindow* window = vtkRenderWindow::New();

view->SetupRenderWindow(window);

window->GetInteractor()->Start();

source->Delete();

bfs->Delete();

view->Delete();

window->Delete();

return 0;

}

Fig. 3. Simple Titan example in C++.

from vtk import *

# Create a random graph

source = vtkRandomGraphSource();

# Create BGL algorithm and put it in the pipeline

bfs = vtkBoostBreadthFirstSearch();

bfs.SetInputConnection(source.GetOutputPort());

# Create a view and add the BFS output

view = vtkGraphLayoutView();

view.AddRepresentationFromInputConnection(

bfs.GetOutputPort());

# Color vertices based on BFS search

view.SetVertexColorArrayName("BFS");

view.ColorVerticesOn();

view.SetVertexLabelArrayName("BFS");

view.VertexLabelVisibilityOn();

window = vtkRenderWindow();

view.SetupRenderWindow(window);

window.GetInteractor().Start();

Fig. 4. Simple Titan example using Python bindings.

toolkit.

4 DATA STRUCTURES

New data structures tailored to informatics algorithms are one of the
fundamental changes introduced as part of Titan. Currently, we sup-
port two main new data structures, vtkTable and vtkGraph (along with
associated subclasses for directed, undirected, DAGs, and trees). We
are testing a third set of structures for supporting N-dimensional ar-

Fig. 5. Example graph colored and labeled by the results of a Boost
Graph Library breadth-first search algorithm starting from the vertex la-
beled 0.

Fig. 6. Titan view demonstrating hierarchical graph bundles and dy-
namic labeling. Edges link each class in VTK to its superclass, and
are grouped by library. Classes are labeled without overlap and prior-
ity is given to classes with many subclasses (see VTK\Infovis\Testing
\Cxx\TestGraphHierarchicalBundle.cxx).

rays (vector/matrix/tensor). Linear algebra and statistics support will
be released in a later version of Titan.

4.1 Table

vtkTable is the simplest of the Titan data structures. It is simply a col-
lection of columns stored in arrays. Each column is accessed by name,
and columns may be added, altered, or removed by algorithms. As
part of the support for vtkTable the toolkit now includes discriminated-
union (vtkVariant, vtkVariantArray) and string (vtkStdString and vtk-

StringArray) types in addition to the numeric types already in VTK.

4.2 Graph Classes

The hierarchy for graph classes is shown in Figure 7. The blue classes
are the main data structure classes that flow through a VTK pipeline.
At the top level, we distinguish between graphs whose edges have in-
herent order from source to target (directed graphs) and graphs whose
edges do not indicate direction (undirected graphs). The directed
graph subclasses are naturally structured by specialization. A directed
acyclic graph (i.e. a graph with no paths that lead back to the same
place) is a subset of the class of all directed graphs. A vtkTree further
restricts this by enforcing a hierarchy: every vertex but the root must
have exactly one parent (incoming edge). The green classes are the
mutable classes used to create or modify graphs. The structure of a
graph may be copied into any other graph instance, if it first passes a



vtkGraph

vtkDirectedGraph vtkUndirectedGraph

vtkDirectedAcyclicGraph

vtkTree

vtkMutableDirectedGraph vtkMutableUndirectedGraph

Fig. 7. Graph class hierarchy.

compatibility test.

This hierarchy gives us several advantages. Filters that operate on
vtkGraph will work for all graph types. So one can send a vtkTree or
a vtkDAG into a filter that takes the more general vtkGraph as an input
type (such as vtkVertexDegree). The subclasses also enable filters to be
specific about input type: if a filter requires a tree, that can be specified
as the input type.

The separate mutable classes allow the enforcement of the follow-
ing invariant: All instances of graph data structures are valid at all
times. If vtkGraph itself was mutable, it would have methods for
adding edges and vertices. Due to inheritance, this method would exist
in all subclasses, including vtkTree. The result would be that vtkTree

could at times hold a structure that is not a valid tree. It would be pro-
hibitively expensive in time and complexity to check for a valid tree
after every edge or vertex addition. Prefuse resolves this issue by not
enforcing proper structure at all times, instead providing a method to
check whether a tree is valid. This solves the problem, but relies on
the caller to check whether the tree is valid at appropriate times.

In Titan, the user generates a tree by first creating an instance of
vtkMutableDirectedGraph. After adding the appropriate vertices and
edges to create the tree, the user calls CheckedShallowCopy() on an
instance of vtkTree, passing the mutable graph as an argument. This
method will do one of two things. If the tree is valid, it will set the
structure via a shallow copy and return true. If it is not a valid tree, it
will return false.

Mutable 
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GraphStructure Graph
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Fig. 8. Copy-on-write of graph structure (a) after a shallow copy, and (b)
after the mutable graph is modified.

An additional feature of the graph data structures is copy-on-write
sharing. Since all graphs share the same internal representation, multi-
ple objects, even those of different types, may share the same structure.
A deep copy of the structure is only made if the user modifies a graph
whose structure is shared with other graphs (see Figure 8). To the
caller, the graph instances behave as though they were independent of
other graphs, while internally memory usage is optimized.

The graph data structures were designed for maximum efficiency.
Figure 9 compares the time to construct and analyze vtkGraph with
a comparable graph from the Boost Graph Library (BGL). The BGL
provides a family of graph types with selectable storage structures. For
this comparison, we chose the BGL graph type which stores the graph
adjacency list as a vector of vectors, which is similar to the vtkGraph

implementation. This structure provides memory efficiency and fast
traversal, trading-away efficient modification and deletion. This trade-
off is appropriate for VTK’s pipeline architecture since most filters ei-
ther append to an existing data structure or create new structures from

scratch, making in-place deletion nearly nonexistent.
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Fig. 9. Runtime of vtkGraph as compared to a boost graph. All algo-
rithms were run on a graph with 1 million vertices and 4 million edges.

As in other toolkits, the user may assign an arbitrary number of
arrays to the vertices and edges of the graph. These attributes are may
be used in various ways to alter the visualization of the graph, such
using them to color or label the graph.

5 CODE COUPLING

Applications targeted at real world analysis problems have to provide
end-to-end functionality. To ease application development, a unified
toolkit should provide a broad range of functionality from database
connections and data ingestion to filtering, algorithms, analysis, pre-
sentation and interaction. To provide an expanded range of function-
ality the Titan toolkit uses, and collaborates with, a number of popular
open source projects.

5.1 Boost Graph Library

Graph algorithms are an essential part of many informatics applica-
tions and a unified toolkit needs to provide that functionality. The
Boost Libraries [1] are a popular and powerful set of libraries for C++.
One of these libraries is the Boost Graph Library (BGL) [25]. The
BGL provides many efficient, generic graph algorithms which operate
on any graph type that implements a set of concepts. The Titan team
decided to use these BGL algorithms instead of reimplementing them
from scratch. To use a vtkGraph with a BGL algorithm, callers simply
include vtkBoostGraphAdapter.h. This “data-less” adapter implements
the required BGL concepts for vtkDirectedGraph and vtkUndirected-

Graph, thus allowing BGL algorithms to process Titan graphs directly.
The interface between Titan and BGL follows the VTK pipeline

model. Referencing the “hello world” code example in Figure 3 we
see that the header files for the adapter and for the BGL algorithm
are included. We create a BGL algorithm, put the algorithm in the
pipeline, and then color the nodes of the graph by the results of the
algorithm. From the developers perspective the BGL functionality is
a pipeline component. In practice all the BGL algorithms can be run
in similar fashion. We often string up combinations of various BGL
algorithms in pipelines. In fact, one of the layout algorithms in the
Titan toolkit (G-Space [29]) runs three BGL algorithms to compute
geodesic distances.

5.2 Parallel Boost Graph Library

As a distributed memory toolkit, VTK currently provides a myriad of
functionality around parallel scientific processing and visualization.
The Parallel Boost Graph Library (PBGL) is a generic C++ library
for high-performance parallel and distributed graph algorithms. The
vtkGraph data structure, along with some distributed helper classes,
enables the PBGL functionality to work in the same way as the BGL
classes. The integration of PBGL functionality into Titan is currently
in the early stages, but since we are collaborating directly with the
Indiana University developers, the integration should provide high-
performance and memory efficient access to PBGL algorithms.



5.3 Multithreaded Graph Library

The MultiThreaded Graph Library (MTGL) targets shared memory
platforms such as the massively multi-threaded Cray MTA/XMT [12],
and when used in tandem with the Qthreads library [28], chip multi-
processors such as the Sun Niagara [3] and multi-core workstations.
MTGL is based on the serial Boost Graph Library, as data distribution
is not an issue on the platforms in question. Shared memory program-
ming is a challenge, and algorithm objects in the MTGL can encap-
sulate much, but not all, of this challenge. As in the BGL, the visitor
pattern enables users to apply methods at key points of algorithm ex-
ecution. MTGL users write adapters over their graph data structures
as BGL users do, but there is no assumption that Boost and STL are
available. MTGL codes for connected components on unstructured
graphs, a difficult problem for distributed memory architectures, have
scaled almost perfectly on the Cray MTA-2.

5.4 Qt Libraries

Qt comprises a set of dual-licensed (open source and commercial)
libraries for robust application development. The libraries include
an extensive cross-platform GUI toolkit, unified database access, and
SVG / XML processing. Integrating with Qt provides some immediate
benefits for Titan. Although Titan now supports many native database
connections, Qt’s stellar database support jump-started our efforts to
connect to many types of databases.

Information Visualization applications require not only powerful
view types, but also tightly integrated GUI widgets. Qt satisfied this
requirement for Titan applications. We were easily able to adapt vtk-

Table, vtkTree and vtkSelection into Qt’s model/view architecture. Fig-
ure 10 depicts how the Titan’s Qt tree view accepts a vtkTree and uses
a Qt adapter to use it as the underlying model for a QTreeView widget.
The view is also able to translate Qt selections into VTK selections in
order to synchonize the selection with other VTK views.

vtkQtTreeView

vtkTree

vtkQtTreeView

vtkQtTreeAdaptervtkQtTreeAdapter

QTreeView

QItemSelection

vtkSelectionvtkSelection

vtkSelectionLinkvtkSelectionLink

Fig. 10. How vtkQtTreeView encapsulates a Qt tree widget.

6 DATA INGESTION

In order for a toolkit to be useful (and used) in practice, it must be as
simple as possible for users to load their data. In this section we de-
scribe Titan’s mechanisms for ingesting data from files and databases
as well as the construction process to generate graphs and trees from
tabular data. The general model is to load unprocessed information
from a file or database; apply filters to convert that information into a
graph, tree or table; and finally to pass the finished data structures to
the rest of the pipeline for further processing and analysis.

6.1 Loading From Files

For Titan’s initial release we have implemented readers for some of the
data formats most commonly used in informatics applications. These
include delimited and fixed-width text readers for tabular data, graph
readers that support the Tulip, Chaco and DIMACS file formats, and an
XML reader that can convert well-formed XML to a vtkTree. Adding
readers for new file formats is straightforward. If a file format explic-
itly defines its contents as a graph or a tree, the reader can immedi-
ately output a vtkGraph or vtkTree suitable for further processing. In

cases where a file contains tabular data, however, we choose to treat
the reader’s output as if it had been read from a database. In the next
section we describe how this works.

6.2 Loading From Databases

While loading data from files is a useful capability, direct loading of
data from an unprocessed database is one of the most powerful and
most widely used features in Titan. Our work with customers has
almost always focused on ingestion of data from arbitrary database
queries. Large existing databases have thousands or millions of im-
plicit graphs embedded within them. In addition to VTK readers for
existing file formats, one of Titan’s major contributions is an SQL
database interface that allows a database to be used directly as a data
source for the processing pipeline.

6.2.1 Database Support

Like file formats, there are many databases in everyday use, each with
its own interface semantics. Titan already includes drivers for SQLite
[23], MySQL [10] and PostgreSQL [9]. When built with Qt, Titan
can also use Qt’s support for many additional database types. An up-
coming release will add ODBC support, which allows us to talk to a
still-wider set of databases without having to write native drivers using
each database’s particular and often proprietary API.

6.2.2 Loading Data

Ingesting data from an SQL database is unlike loading from files in
that we must first specify what data we want. This is exactly what SQL
is designed for. Rather than retrieving the database schema at connect
time and attempting to deduce a reasonable set of data to load, we
allow the user to supply an arbitrary SQL query that identifies a data
set of interest. This query can be as broad or as narrow as desired:
the same mechanism that allows a brief preview of a large database
can use the full power of SQL to extract data from multiple interacting
tables. In both cases the output from the SQL query is a vtkTable. In
Section 6.3 we describe how Titan converts this row-based output into
trees, graphs and tables for further processing by the pipeline.

Fig. 11. A VTK/Titan toolkit based application incorporating multiple
views of a data set.

6.3 Creating Graphs and Trees from Tables

In a typical analysis, data organized in tables only forms part of the
end product. Analysts are commonly interested not only in the entities
in a table but also in the relationships and links between them. When
these links are stored as tabular data (which is often the case) we must
provide a way to reconstitute them into a graph or a tree as appropriate.
Moreover, since a nearly unlimited number of relationship graphs can
be derived from any large database depending on the questions being
asked, this mechanism must be flexible enough to adapt to the items
and link structures of interest. In Titan we implement this using the
vtkTableToGraph filter.

The vtkTableToGraph filter takes two inputs: an edge attribute ta-
ble and an optional vertex attribute table. Each column in these tables



specifies a different property of the vertices or edges. Vertex attribute
arrays are naturally assigned to the vertices of the output graph and
commonly contain properties such as vertex name, size, or spatial po-
sition (where appropriate). Edge attributes are likewise assigned to
the edges of the output graph but also encode the graph connectivity.
The vtkTableToGraph filter creates one or more edges for each row in
the edge table by following a template called the link graph. The link
graph is a graph which has one vertex for every column in the edge
table. The edges in the link graph specify how to create edges from
each table row.

Figure 12 demonstrates this translation. On the left is the input edge
table, in the center is the link graph, and on the right is the resulting
graph. The link graph may connect an arbitrary number of columns in
arbitrary patterns such as full connectivity (cliques), paths, or stars.
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Fig. 12. How vtkTableToGraph translates an edge attribute table (left)
into graph edges (right) based on a link graph (center).

Although vtkTableToGraph can create graphs of nearly arbitrary
complexity, we do not often need its power when creating trees. In-
stead, we use two filters, vtkTableToTree and vtkGroupLeafNodes, that
in combination produce arbitrary hierarchies. First, vtkTableToGraph

takes a table as input and creates a simple two-level tree as output. A
single vertex is created to be the root of the tree. Next, we create one
new child of the root vertex for each row in the input table. Once all
the data exist in this trivial tree structure we use vtkGroupLeafNodes

to organize it.

We use a series of vtkGroupLeafNodes filters to organize a tree into
multiple levels. Each instance of vtkGroupLeafNodes adds one level
to a tree, just above the leaf nodes, that groups the leaves based on the
values of some vertex attribute. The order in which these groupings are
applied is reflected in the order of the vtkGroupLeafNodes instances
within the pipeline. This is illustrated in Figure 13.

7 PIPELINE MODEL

Since Titan is integrated into the VTK, it inherits many of the power-
ful qualities of that toolkit. One of the distinguishing characteristics of
this toolkit is a sophisticated pipeline model. Visualizations are cre-
ated from processing units called algorithms or filters. These building
blocks are reusable components that perform a well-defined operation
on one or more input datasets in order to produce one or more outputs.
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Fig. 13. Here we illustrate the use of vtkTableToTree and vtkGrou-
pLeafNodes to convert the table in Figure 12 into a tree. At top we
divide the leaf nodes first by topic, then by author. At bottom we divide
first by author and then by topic. Any number of these groupings may
be arranged to handle complex data.

A specific benefit which the Visualization Toolkit provides is what
is called a “demand-driven pipeline”, which incorporates logic guar-
anteeing that algorithms will not be executed unless necessary. This
results in optimally efficient component execution with no effort on
the developer’s part. In a demand-driven pipeline, the user may mod-
ify parameters in algorithms at any place in the pipeline at any time.
When the user requests an output of a specific algorithm, a request
travels up the pipeline, asking algorithms along the way if their in-
puts or parameters have been modified since the last time the pipeline
was updated. Then, the pipeline executes the minimal number of al-
gorithms in order to bring the requested output up to date.

DatabaseDatabase
Modify Query

SQL Query (vertex data) SQL Query (edge data)

vtkTableToGraph

Graph Layout 

View

Vertex Attributes 

View

Edge Attributes 

ViewViewView View

Fig. 14. The result of a demand-driven pipeline model. When the edge
query is changed, only the pipeline components in red are updated
when the views are redrawn.

This is best described by a practical example in information visual-
ization. Suppose that we wish to query a database in order to construct
a graph and layout the graph in a view. Additionally, we want to show
the edge and vertex attributes of the graph in tabular views. A pos-
sible pipeline for this application is shown in Figure 14. If the edge
query changes, initially nothing will update. When the application
decides to update all views, only the parts of the pipeline in red will
execute. While this may seem trivial in such a small example, in prac-
tical applications there are many more algorithms involved. Without
this advanced pipeline model, the bookkeeping necessary to optimally
reexecute algorithms quickly becomes prohibitive and unneeded pro-
cessing will likely result. VTK’s demand-driven pipeline provides all
of this complex bookkeeping for free, so algorithms are never executed
until necessary.

8 PACKAGING PIPELINES WITH VIEWS

The Titan filters for generating geometry from data structures, glyph-
ing, coloring, etc. may be used by themselves, but can take some



preparation to connect the pipeline in the appropriate way and set the
parameters correctly to achieve the desired result. The user also must
set up meaningful interactions with the view when the user clicks,
drags, or hovers the mouse in certain locations. In order to simplify
this process, and also provide a powerful linked selection mechanism,
Titan provides view classes.

A Titan view (any subclass of vtkView) is a generic container whose
purpose is to display one or more data set representations. A represen-
tation is an instance of vtkDataRepresentation or one its subclasses.
In the most general case, views may support displaying multiple rep-
resentations, and possibly even various types of representations. The
Titan view architecture also provides a simpler way to create and use
a view when there is only one tightly integrated representation associ-
ated with it. In this case, the representation is largely hidden from both
the implementer and user of the view. Most currently implemented
views, such as the treemap view, have one representation per view.

Views currently fall into two categories: widgets and rendered
views. Widget views are common user interface components that use
a Titan data structure as the underlying model. The currently imple-
mented widget views in Titan use Qt. These views include an adapter
to make a Titan data structure look like a Qt model, and code to adapt
Qt selections to VTK selections in order to link with other views.

The other type of Titan view is a rendered view. These views
use an underlying OpenGL canvas (vtkRenderer) and subclass vtkRen-

derView. Titan currently supports four rendered views. vtkRenderView

itself is capable of viewing polygonal geometry from any source. This
view is appropriate for rendering data for scientific visualization.

vtkGraphLayoutView is a traditional ball-and-stick view of a graph.
It supports multiple layout strategies, including circular and force-
directed.

vtkTreeLayoutView is similar to vtkGraphLayoutView, but displays
a tree in standard or radial layout. Both the tree layout and graph
layout views are easily extended as new layout strategies are imple-
mented. Figure 17 demonstrates some of the various graph and tree
layout techniques currently available in Titan.

vtkTreeMapView is, as the name suggests, a TreeMap. The TreeMap
is also configurable via different layout strategies, and uses an arbitrary
attribute to size the boxes. Each of these views may be configured to
label and color based on different attributes (see Figure 16).

vtkView

vtkQtItemView

vtkQtListView

vtkRenderView

vtkGraphLayoutViewvtkQtListView

vtkQtTableView

vtkGraphLayoutView

vtkTreeLayoutViewvtkQtTableView

vktQtTreeView

vtkTreeLayoutView

vtkTreeMapView

Fig. 15. Titan views.

The Titan view classes are implemented using other VTK classes,
including filters, mappers, actors, interactor styles, layout strategies,
etc. This design provides both simplicity and flexibility: a beginning
Titan user can use a view with minimal configuration, while interme-
diate users can customize views by replacing individual components
(e.g. specifying a new layout strategy). Advanced users might sub-
class an existing view or develop an entirely new view class using new
and existing components.

9 SELECTIONS

Selections are the glue that hold views together. While different visu-
alizations may show the same information, they will generally do this
in very different ways. A tabular list of vertex properties is very dif-
ficult to visually correlate with a graph layout view. When examining
individual items or groups of items in one view, the user must be able
to immediately see the information related to those items in the other
views.

Fig. 16. Treemap view of the VTK class hierarchy. Classes are sized by
the size of the implementation file, and colored by last modified date.

For these reasons, Titan makes the selection class, vtkSelection, a
first-class VTK data object. Because it is a subclass of vtkDataOb-

ject selections may be manipulated through pipeline algorithms, just
like any other data object. Common operations such as appending
multiple selections into a single selection are naturally implemented
as algorithms that input and output selections. Another example of
a selection algorithm inputs a selection and a graph, and expands the
selection by including vertices within one hop of selected vertices.

Selections acquire meaning when associated with another data ob-
ject, but are not tied to any one specific data object. This is useful
in situations where different data objects, such as graphs and tables,
may refer to the same underlying information. A selection made in
a graph view may be applied to a table view, and vice versa. This is
accomplished using the various selection types shown in Table 1. The
vtkConvertSelection filter allows selections to be converted between
various types using a single line of code.

Selection Type Description

Indices Matches data-object specific indices of
items.

Values Matches all items where an attribute
matches one of a list of values

Multiple Values Matches all items where a set of at-
tributes all match one of a list of value
sets.

Threshold Matches items where an attribute
matches a certain set of inequality
relationships.

Frustum Matches all items falling within a screen
frustum (this is simply a rectangle in a
2D view).

Table 1. Types of selection supported in Titan. “Items” may represent
vertices, edges, table rows, points, or cells, depending on the type of
data object the selection is associated with.

Titan allows arbitrary user-controlled linking between representa-
tions in multiple views. Each representation refers to an instance of
vtkSelectionLink. The user links the selections in multiple representa-
tions simply by assigning the same vtkSelectionLink.



Fig. 17. A random tree shown in nine views with different layout strate-
gies. The same subtree is selected through linked selection among
the views. The layout strategies are circular (upper left), random (up-
per center), fast 2D (upper right), clustering (center left), force directed
(center), simple 2D (center right), standard tree (lower left), radial tree
(lower center), and radial tree with logarithmic scaling (lower right).

10 FUTURE WORK

At the time of this writing most of the informatics capabilities
within Titan are serial and are not using the parallel processing and
client/server capabilities of VTK. Our team (Sandia, Kitware, and In-
diana University) is finalizing the parallel graph data structures (based
on PBGL design) and have some working “hello world” examples.
Once the parallel graph data structures are completed, the parallel
development effort should proceed quite smoothly; vtkTable is triv-
ially distributed, vtkTree, and vtkDirectedAcyclicGraph inherit from vtk-

Graph so are taken care of by the distribution and functionality in the
superclass. The entire informatics pipeline will have to work effi-
ciently in a distributed memory context. While the developers do not
want to underestimate the complexity of this task, we have extensive
experience in distributed memory software development; using the ex-
isting capabilities within VTK and packages like PBGL should greatly
accelerate our progress.

For real world analysis, we will have to expand the functionality of
Titan to include not only graph algorithms, but also parallel statistics,
and linear (multi-linear) algebra libraries. The data structures that are
still in our sandbox repository (vtkDenseArray, vtkSparseArray, vtkFac-

toredArray) will support N-dimensional (vector/matrix/tensor) storage
and operations. The data structures are being designed so that we can
provide “data-less adapters” between Titan and the popular linear al-
gebra packages and statistics libraries (like Trilinos [16], ScaLAPACK
and “R”).

11 CONCLUSION

We present an expansion of the popular open source Visualization
Toolkit to support the ingestion, processing, and display of infor-
matics data. The informatics capabilties are being released as open
source into the VTK repository and leverage the same flexible, com-
ponent based, demand-driven pipeline architecture. The unified toolkit
should provide an excellent platform for the development of applica-
tions needing database access, scalable analysis, and views that com-
bine scientific and information visualization techniques. The unifica-
tion of information and scientific visualization is long overdue and we
believe that VTK/Titan represents a good first step in that direction.
We also recognize that a toolkit does not succeed without community

support and contribution, so we are actively seeking members of the
community to collaborate with us on Titan 2.0.
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